Ferredoxin:NAD + Oxidoreductase of Thermoanaerobacterium saccharolyticum and Its Role in Ethanol Formation

Author:

Tian Liang12,Lo Jonathan3,Shao Xiongjun12,Zheng Tianyong12,Olson Daniel G.12,Lynd Lee R.12

Affiliation:

1. Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA

2. Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

3. National Renewable Energy Laboratory, Golden, Colorado, USA

Abstract

ABSTRACT Ferredoxin:NAD + oxidoreductase (NADH-FNOR) catalyzes the transfer of electrons from reduced ferredoxin to NAD + . This enzyme has been hypothesized to be the main enzyme responsible for ferredoxin oxidization in the NADH-based ethanol pathway in Thermoanaerobacterium saccharolyticum ; however, the corresponding gene has not yet been identified. Here, we identified the Tsac_1705 protein as a candidate FNOR based on the homology of its functional domains. We then confirmed its activity in vitro with a ferredoxin-based FNOR assay. To determine its role in metabolism, the tsac_1705 gene was deleted in different strains of T. saccharolyticum . In wild-type T. saccharolyticum , deletion of tsac_1705 resulted in a 75% loss of NADH-FNOR activity, which indicated that Tsac_1705 is the main NADH-FNOR in T. saccharolyticum . When both NADH- and NADPH-linked FNOR genes were deleted, the ethanol titer decreased and the ratio of ethanol to acetate approached unity, indicative of the absence of FNOR activity. Finally, we tested the effect of heterologous expression of Tsac_1705 in Clostridium thermocellum and found improvements in both the titer and the yield of ethanol. IMPORTANCE Redox balance plays a crucial role in many metabolic engineering strategies. Ferredoxins are widely used as electron carriers for anaerobic microorganism and plants. This study identified the gene responsible for electron transfer from ferredoxin to NAD + , a key reaction in the ethanol production pathway of this organism and many other metabolic pathways. Identification of this gene is an important step in transferring the ethanol production ability of this organism to other organisms.

Funder

U.S. Department of Energy

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3