Impact of 16S rRNA Gene Sequence Analysis for Identification of Bacteria on Clinical Microbiology and Infectious Diseases

Author:

Clarridge Jill E.1

Affiliation:

1. Department of Laboratory Medicine, University of Washington, and Pathology and Laboratory Medicine Service, Veterans Affairs Medical Center, Seattle, Washington

Abstract

SUMMARY The traditional identification of bacteria on the basis of phenotypic characteristics is generally not as accurate as identification based on genotypic methods. Comparison of the bacterial 16S rRNA gene sequence has emerged as a preferred genetic technique. 16S rRNA gene sequence analysis can better identify poorly described, rarely isolated, or phenotypically aberrant strains, can be routinely used for identification of mycobacteria, and can lead to the recognition of novel pathogens and noncultured bacteria. Problems remain in that the sequences in some databases are not accurate, there is no consensus quantitative definition of genus or species based on 16S rRNA gene sequence data, the proliferation of species names based on minimal genetic and phenotypic differences raises communication difficulties, and microheterogeneity in 16S rRNA gene sequence within a species is common. Despite its accuracy, 16S rRNA gene sequence analysis lacks widespread use beyond the large and reference laboratories because of technical and cost considerations. Thus, a future challenge is to translate information from 16S rRNA gene sequencing into convenient biochemical testing schemes, making the accuracy of the genotypic identification available to the smaller and routine clinical microbiology laboratories.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Microbiology (medical),Public Health, Environmental and Occupational Health,General Immunology and Microbiology,Epidemiology

Reference115 articles.

1. Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic Local Alignment Search Tool. J. Mol. Biol.215:729-731.

2. Banks, J., S. Poole, S. P. Nair, J. Lewthwaite, P. Tabona, R. McNab, M. Wilson, A. Paul, and B. Henderson. 2002. Streptococcus sanguis secretes CD14-binding proteins that stimulate cytokine synthesis: a clue to the pathogenesis of infective (bacterial) endocarditis. Microb. Pathog.32:105-116.

3. Evolutionary Analysis by Whole-Genome Comparisons

4. Boddinghaus, B., J. Wolters, W. Heikens, and E. C. Bottger. 1990. Phylogenetic analysis and identification of different serovars of Mycobacterium intracellulare at the molecular level. FEMS Microbiol. Lett.58:197-203.

5. Detection and identification of mycobacteria by amplification of rRNA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3