Genome Data Mining and Soil Survey for the Novel Group 5 [NiFe]-Hydrogenase To Explore the Diversity and Ecological Importance of Presumptive High-Affinity H 2 -Oxidizing Bacteria

Author:

Constant Philippe,Chowdhury Soumitra Paul1,Hesse Laura,Pratscher Jennifer,Conrad Ralf

Affiliation:

1. Present address: Department of Microbe-Plant Interactions, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany.

Abstract

ABSTRACT Streptomyces soil isolates exhibiting the unique ability to oxidize atmospheric H 2 possess genes specifying a putative high-affinity [NiFe]-hydrogenase. This study was undertaken to explore the taxonomic diversity and the ecological importance of this novel functional group. We propose to designate the genes encoding the small and large subunits of the putative high-affinity hydrogenase hhyS and hhyL , respectively. Genome data mining revealed that the hhyL gene is unevenly distributed in the phyla Actinobacteria , Proteobacteria , Chloroflexi , and Acidobacteria . The hhyL gene sequences comprised a phylogenetically distinct group, namely, the group 5 [NiFe]-hydrogenase genes. The presumptive high-affinity H 2 -oxidizing bacteria constituting group 5 were shown to possess a hydrogenase gene cluster, including the genes encoding auxiliary and structural components of the enzyme and four additional open reading frames (ORFs) of unknown function. A soil survey confirmed that both high-affinity H 2 oxidation activity and the hhyL gene are ubiquitous. A quantitative PCR assay revealed that soil contained 10 6 to 10 8 hhyL gene copies g (dry weight) −1 . Assuming one hhyL gene copy per genome, the abundance of presumptive high-affinity H 2 -oxidizing bacteria was higher than the maximal population size for which maintenance energy requirements would be fully supplied through the H 2 oxidation activity measured in soil. Our data indicate that the abundance of the hhyL gene should not be taken as a reliable proxy for the uptake of atmospheric H 2 by soil, because high-affinity H 2 oxidation is a facultatively mixotrophic metabolism, and microorganisms harboring a nonfunctional group 5 [NiFe]-hydrogenase may occur.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3