Impact of Alginate Conditioning Film on Deposition Kinetics of Motile and Nonmotile Pseudomonas aeruginosa Strains

Author:

de Kerchove Alexis J.1,Elimelech Menachem1

Affiliation:

1. Department of Chemical Engineering, Environmental Engineering Program, Yale University, P.O. Box 208286, New Haven, Connecticut 06520-8286

Abstract

ABSTRACT The initial deposition of bacteria in most aquatic systems is affected by the presence of a conditioning film adsorbed at the liquid-solid interface. Due to the inherent complexity of such films, their impact on bacterial deposition remains poorly defined. The aim of this study was to gain a better understanding of the effect of a conditioning film on the deposition of motile and nonmotile Pseudomonas aeruginosa cells in a radial stagnation point flow system. A well-defined alginate film was used as a model conditioning film because of its polysaccharide and polyelectrolyte nature. Deposition experiments under favorable (nonrepulsive) conditions demonstrated the importance of swimming motility for cell transport towards the substrate. The impact of the flagella of motile cells on deposition is dependent on the presence of the conditioning film. We showed that on a clean substrate surface, electrostatic repulsion governs bacterial deposition and the presence of flagella increases cell deposition. However, our results suggest that steric interactions between flagella and extended polyelectrolytes of the conditioning film hinder cell deposition. At a high ionic strength (100 mM), active swimming motility and changes in alginate film structure suppressed the steric barrier and allowed conditions favorable for deposition. We demonstrated that bacterial deposition is highly influenced by cell motility and the structure of the conditioning film, which are both dependent on ionic strength.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3