Why Is Carbonic Anhydrase Essential to Escherichia coli ?

Author:

Merlin Christophe1,Masters Millicent1,McAteer Sean1,Coulson Andrew1

Affiliation:

1. University of Edinburgh, Institute of Cell and Molecular Biology, Edinburgh EH9 3JR, Scotland

Abstract

ABSTRACT The can (previously yadF ) gene of Escherichia coli encodes a β-class carbonic anhydrase (CA), an enzyme which interconverts CO 2 and bicarbonate.Various essential metabolic processes require either CO 2 or bicarbonate and, although carbon dioxide and bicarbonate spontaneously equilibrate in solution, the low concentration of CO 2 in air and its rapid diffusion from the cell mean that insufficient bicarbonate is spontaneously made in vivo to meet metabolic and biosynthetic needs. We calculate that demand for bicarbonate is 10 3 - to 10 4 -fold greater than would be provided by uncatalyzed intracellular hydration and that enzymatic conversion of CO 2 to bicarbonate is therefore necessary for growth. We find that can expression is ordinarily required for growth in air. It is dispensable if the atmospheric partial pressure of CO 2 is high or during anaerobic growth in a closed vessel at low pH, where copious CO 2 is generated endogenously. CynT, the single E. coli Can paralog, can, when induced with azide, replace Can; also, the γ-CA from Methanosarcina thermophila can at least partially replace it. Expression studies showed that can transcription does not appear to respond to carbon dioxide concentration or to be autoregulated. However, can expression is influenced by growth rate and the growth cycle; it is expressed best in slow-growing cultures and at higher culture densities. Expression can vary over a 10-fold range during the growth cycle and is also elevated during starvation or heat stress.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference39 articles.

1. Alber, B. E., and J. G. Ferry. 1994. A carbonic anhydrase from the archaeon Methanosarcina thermophila. Proc. Natl. Acad. Sci. USA91:6909-6913.

2. Arigoni, F., F. Talabot, M. Peitsch, M. D. Edgerton, E. Meldrum, E. Allet, R. Fish, T. Jamotte, M. L. Curchod, and H. Loferer. 1998. A genome-based approach for the identification of essential bacterial genes. Nat. Biotechnol.16:851-856.

3. Axley, M. J., and D. A. Grahame. 1991. Kinetics for formate dehydrogenase of Escherichia coli formate-hydrogen lyase. J. Biol. Chem.266:13731-13736.

4. Berg H. C. 1983. Random walks in biology. Princeton University Press Princeton N.J.

5. Böck A. and G. Sawers. 1996. Fermentation p. 262-282. In F. C. Neidhardt R. Curtiss III J. L. Ingraham E. C. C. Lin K. B. Low B. Magasanik W. S. Reznikoff M. Riley M. Schaechter and H. E. Umbarger (ed.) Escherichia coli and Salmonella : cellular and molecular biology 2nd ed. ASM Press Washington D.C.

Cited by 204 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3