Initial hydrogenation and extensive reduction of substituted 2,4-dinitrophenols

Author:

Lenke H,Knackmuss H

Abstract

Rhodococcus erythropolis HL 24-1 isolated as a 2,4-dinitrophenol-degrading organism can utilize 2-chloro-4,6-dinitrophenol as the sole nitrogen, carbon, and energy source under aerobic conditions. This compound is metabolized with liberation of stoichiometric amounts of chloride and nitrite. Under anaerobic conditions, 2,4-dinitrophenol was transiently accumulated in the culture fluid, indicating a reductive elimination of chloride. During aerobic bioconversion of 2-amino-4,6-dinitrophenol by R. erythropolis HL 24-1, a reductive elimination of nitrite leading to 2-amino-6-nitrophenol was observed. Elimination of chloride or nitrite by the initial formation of a hydride Meisenheimer complex is discussed. A methyl group in the ortho position of the 2,4-dinitrophenol gives rise to an extensive reduction of the aromatic ring under aerobic conditions. Thus, 2-methyl-4,6-dinitrophenol was shown to be converted to the two diastereomers of 4,6-dinitro-2-methylhexanoate as dead-end metabolites which were identified by spectroscopic methods.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3