Microbial biodegradation of nitrophenols and their derivatives: A Review

Author:

Alam Sk AftabulORCID,Saha PradiptaORCID

Abstract

Today, nitrophenols (NPs) represent chemicals highly in demand not only due to their function in synthetic chemistry but also due to their huge applications in several industries. Such diverse requirements and applications has resulted in a widespread abundance of these chemicals. Improper application and waste disposal practice results in the continuous discharge of these compounds into the environment and causes pollution threat to soil, groundwater, river water, etc. These xenobiotic chemicals are hazardous, toxic, carcinogenic, and mutagenic which results in serious health problems. The Nitro group present in the phenol makes them recalcitrant which causes the persistence of these chemicals in the environment. Although several chemicals, electrochemical, physical, and physicochemical methods have been proposed, bioremediation approaches mainly involving bacteria are considered best. To date, very few successful attempts (related to microbe-assisted bioremediation) have been carried out with environmental habitats for the removal of NPs (both in-situ and ex-situ attempts). So, as far as the effectiveness of the bioremediation process for NP decontamination is concerned, we are far away. More explorative studies using efficient aerobic-anaerobic NP degrading bacterial consortium (or combination of microbes- plant systems) and advanced techniques including omics approaches and nanotechnologies may help towards developing better practicable bioremediation approaches, in the future. This review article focuses on the list of nitrophenol degrading microorganisms, biodegradation pathways of NPs, bioremediation by immobilized cell technique, and the advantages and disadvantages of bioremediation. This article will increase our knowledge of the biodegradation of NPs.

Publisher

Journal of Experimental Biology and Agricultural Sciences

Subject

General Agricultural and Biological Sciences,General Veterinary,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3