High-molecular-weight proteins of nontypeable Haemophilus influenzae mediate bacterial adhesion to cellular proteoglycans

Author:

Noel G J1,Love D C1,Mosser D M1

Affiliation:

1. Department of Pediatrics, Cornell University Medical College, New York, New York 10021.

Abstract

A family of high-molecular-weight (HMW) surface-exposed proteins of nontypeable Haemophilus influenzae (NT H. influenzae) mediated adherence of these organisms to human epithelium. To better understand the molecular basis for this adherence, the role of glycosaminoglycans (GAGs), substances commonly expressed on cell surfaces, was examined. Bacterial adherence to cells with specific deficiencies in GAG biosynthesis was measured. HMW protein-dependent bacterial adherence to normal cells was significantly greater than adherence to cells deficient in sulfated GAGs or to cells deficient in heparan sulfate but overexpressing chondroitin sulfate. Cells expressing undersulfated heparan sulfate exhibited intermediate levels of bacterial adherence. The addition of exogenous dextran sulfate or heparin inhibited over 70% of the adherence of NT H. influenzae to normal cells, whereas hyaluronic acid and chondroitin sulfate tested at the same concentration (100 micrograms/ml) inhibited bacterial adherence by less than 11%. Treatment of cells with heparinase significantly reduced bacterial adherence. Following electrophoretic separation, HMW proteins were shown to bind directly to radiolabeled heparin. These results indicate that HMW protein-dependent adherence of NT H. influenzae is mediated by cellular sulfated GAGs and that heparan sulfate may be the predominant GAG involved in this process. However, the decreased adherence of bacteria to cells expressing undersulfated heparan sulfate and the inhibition of bacterial adherence by the addition of exogenous dextran sulfate suggest that bacterial adhesion to mammalian cells is likely to be influenced by a variety of factors, including the degree of sulfation and the specificity of the carbohydrate moieties contained in the cellular proteoglycans.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3