New Approaches for Isolation of Previously Uncultivated Oral Bacteria

Author:

Sizova M. V.,Hohmann T.,Hazen A.,Paster B. J.,Halem S. R.,Murphy C. M.,Panikov N. S.,Epstein S. S.

Abstract

ABSTRACTA significant number of microorganisms from the human oral cavity remain uncultivated. This is a major impediment to the study of human health since some of the uncultivated species may be involved in a variety of systemic diseases. We used a range of innovations previously developed to cultivate microorganisms from the human oral cavity, focusing on anaerobic species. These innovations include (i)in vivocultivation to specifically enrich for species actively growing in the oral cavity (the “minitrap” method), (ii) single-cell long-term cultivation to minimize the effect of fast-growing microorganisms, and (iii) modifications of conventional enrichment techniques, using media that did not contain sugar, including glucose. To enable cultivation of obligate anaerobes, we maintained strict anaerobic conditions in most of our cultivation experiments. We report that, on a per cell basis, the most successful recovery was achieved using minitrap enrichment (11%), followed by single-cell cultivation (3%) and conventional plating (1%). Taxonomically, the richest collection was obtained using the single-cell cultivation method, followed by minitrap and conventional enrichment, comprising representatives of 13, 9, and 4 genera, respectively. Interestingly, no single species was isolated by all three methods, indicating method complementarity. An important result is the isolation and maintenance in pure culture of 10 strains previously only known by their molecular signatures, as well as representatives of what are likely to be three new microbial genera. We conclude that the ensemble of new methods we introduced will likely help close the gap between cultivated and uncultivated species from the human oral cavity.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3