Requirement of flhA for Swarming Differentiation, Flagellin Export, and Secretion of Virulence-Associated Proteins in Bacillus thuringiensis

Author:

Ghelardi Emilia1,Celandroni Francesco1,Salvetti Sara1,Beecher Douglas J.2,Gominet Myriam3,Lereclus Didier34,Wong Amy C. L.2,Senesi Sonia1

Affiliation:

1. Dipartimento di Patologia Sperimentale, Biotecnologie Mediche, Infettivologia ed Epidemiologia, Università degli Studi di Pisa, 56127 Pisa, Italy

2. Food Research Institute, Department of Food Microbiology and Toxicology, University of Wisconsin-Madison, Madison, Wisconsin 53706

3. Unité de Biochimie Microbienne, CNRS, Institut Pasteur, 75724 Paris cedex

4. Unité de Lutte Biologique, Institut National de la Recherche Agronomique, La Miniére, Guyancourt cedex, France

Abstract

ABSTRACT Bacillus thuringiensis is being used worldwide as a biopesticide, although increasing evidence suggests that it is emerging as an opportunistic human pathogen. While phospholipases, hemolysins, and enterotoxins are claimed to be responsible for B. thuringiensis virulence, there is no direct evidence to indicate that the flagellum-driven motility plays a role in parasite-host interactions. This report describes the characterization of a mini-Tn 10 mutant of B. thuringiensis that is defective in flagellum filament assembly and in swimming and swarming motility as well as in the production of hemolysin BL and phosphatidylcholine-preferring phospholipase C. The mutant strain was determined to carry the transposon insertion in flhA , a flagellar class II gene encoding a protein of the flagellar type III export apparatus. Interestingly, the flhA mutant of B. thuringiensis synthesized flagellin but was impaired in flagellin export. Moreover, a protein similar to the anti-sigma factor FlgM that acts in regulating flagellar class III gene transcription was not detectable in B. thuringiensis , thus suggesting that the flagellar gene expression hierarchy of B. thuringiensis differs from that described for Bacillus subtilis . The flhA mutant of B. thuringiensis was also defective in the secretion of hemolysin BL and phosphatidylcholine-preferring phospholipase C, although both of these virulence factors were synthesized by the mutant. Since complementation of the mutant with a plasmid harboring the flhA gene restored swimming and swarming motility as well as secretion of toxins, the overall results indicate that motility and virulence in B. thuringiensis may be coordinately regulated by flhA , which appears to play a crucial role in the export of flagellar as well as nonflagellar proteins.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3