Use of Two-Dimensional Electrophoresis To Study Differential Protein Expression in Divercin V41-Resistant and Wild-Type Strains of Listeria monocytogenes

Author:

Duffes Frederique1,Jenoe Paul2,Boyaval Patrick1

Affiliation:

1. Laboratoire de Recherches de Technologie Laitière, Institut National de la Recherche Agronomique, 35042 Rennes Cedex, France,1 and

2. Department of Biochemistry, Biozentrum of the University of Basel, CH-4056 Basel, Switzerland2

Abstract

ABSTRACT The use of bacteriocins from food-grade lactic acid bacteria to fight against the food-borne pathogen Listeria monocytogenes has been gaining interest. However, the emergence of resistant cells is frequently reported when Listeria is exposed to such antibacterials. A two-dimensional electrophoresis study of whole-cell protein expression of Listeria monocytogenes variants sensitive or resistant to the action of a bacteriocin produced by Carnobacterium divergens V41, divercin V41, is reported in this paper. The resistant variant obtained from the sensitive strain of L. monocytogenes P was also resistant to piscicocins V1 and SF668, but remained sensitive to nisin. Its growth rate was 50% less than the sensitive strain, and the MIC for it was 10 4 times higher. No reversion of the resistance was observed after 20 successive cultures in the absence of divercin V41. Comparison of the protein patterns by two-dimensional gel electrophoresis analysis showed clear differences. In the resistant variant pattern, at least nine spots had disappeared and eight new ones were observed. One of the newly synthesized proteins was identified as a flagellin of L. monocytogenes . Direct interaction between flagellin and divercin V41 was not evidenced. Intracellular synthesis of flagellin is probably an indirect effect of a modification in transcriptional regulation with widespread effects through a sigma factor. An intense protein, only present in the sensitive strain, was identified as a non-heme iron-binding ferritin displaying strong similarities to Dps proteins. Common modifications in the transcriptional regulation for these two proteins are discussed.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3