Functional role of mucoid exopolysaccharide (alginate) in antibiotic-induced and polymorphonuclear leukocyte-mediated killing of Pseudomonas aeruginosa

Author:

Bayer A S1,Speert D P1,Park S1,Tu J1,Witt M1,Nast C C1,Norman D C1

Affiliation:

1. Department of Medicine, Harbor-UCLA Medical Center, Torrance 90509.

Abstract

We evaluated in vitro the functional role of mucoid exopolysaccharide (MEP) of Pseudomonas aeruginosa in blocking antibiotic-induced and polymorphonuclear leukocyte (PMN)-mediated pseudomonal killing. The serum-resistant P. aeruginosa isolates used were mucoid strain 144MR and its nonmucoid revertant, strain 144NM. By timed kill curves, early bacterial effects of amikacin against mucoid strain 144MR were substantially less than those observed with nonmucoid strain 144NM; this effect was reversible with enzymatic hydrolysis of MEP of strain 144MR by alginase. Also, early tobramycin uptake (15 to 30 min) by mucoid 144MR cells was less than that seen with nonmucoid strain 144NM; pretreatment of 144MR cells with alginase substantially enhanced early tobramycin uptake compared with untreated 144MR cells (P = 0.08). In strain 144NM (but not in strain 114MR) there was a notable postantibiotic leukocidal enhancement effect manifested by increased nonopsonic killing following brief exposure of these cells to supra-MIC amikacin; pretreatment of strain 144MR with alginase rendered these cells more susceptible to amikacin-induced postantibiotic leukocidal enhancement. Similarly, direct PMN-mediated nonopsonic killing of mucoid strain 144MR was significantly less than that observed with strain 144NM (P less than 0.05); pretreatment of 144MR cells with alginase rendered this strain equal to strain 144NM in susceptibility to nonopsonic killing. In addition, exogenous sodium alginate or extracted MEP of strain 144MR interfered with effective nonopsonic killing of strain 144NM by PMNs. Studies also indicated that mucoid strain 144MR was phagocytosed significantly less well than its nonmucoid mate (P less than 0.00001), an effect reversed by pretreatment of the mucoid cells with alginase. These data confirm that P. aeruginosa MEPs functionally decrease the uptake and early bactericidal effect of aminoglycosides in vitro and interfere with effective PMN-mediated nonopsonic phagocytosis and killing of mucoid strains.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3