Genetic and Molecular Basis of Kingella kingae Encapsulation

Author:

Starr Kimberly F.1,Porsch Eric A.2,Seed Patrick C.1,St. Geme Joseph W.23

Affiliation:

1. Department of Pediatrics and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA

2. Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA

3. University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA

Abstract

ABSTRACT Kingella kingae is a common cause of invasive disease in young children and was recently found to produce a polysaccharide capsule containing N -acetylgalactosamine (GalNAc) and β-3-deoxy- d -manno-octulosonic acid (βKdo). Given the role of capsules as important virulence factors and effective vaccine antigens, we set out to determine the genetic determinants of K. kingae encapsulation. Using a transposon library and a screen for nonencapsulated mutants, we identified the previously identified ctrABCD (ABC transporter) operon, a lipA ( kpsC )-like gene, a lipB ( kpsS )-like gene, and a putative glycosyltransferase gene designated csaA ( c apsule s ynthesis type a gene A ). These genes were found to be present at unlinked locations scattered throughout the genome, an atypical genetic arrangement for Gram-negative bacteria that elaborate a capsule dependent on an ABC-type transporter for surface localization. The csaA gene product contains a predicted glycosyltransferase domain with structural homology to GalNAc transferases and a predicted capsule synthesis domain with structural homology to Kdo transferases, raising the possibility that this enzyme is responsible for alternately linking GalNAc to βKdo and βKdo to GalNAc. Consistent with this conclusion, mutation of the DXD motif in the GalNAc transferase domain and of the HP motif in the Kdo transferase domain resulted in a loss of encapsulation. Examination of intracellular and surface-associated capsule in deletion mutants and complemented strains further implicated the lipA ( kpsC )-like gene, the lipB ( kpsS )-like gene, and the csaA gene in K. kingae capsule production. These data define the genetic requirements for encapsulation in K. kingae and demonstrate an atypical organization of capsule synthesis, assembly, and export genes.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3