Modulation of Kingella kingae Adherence to Human Epithelial Cells by Type IV Pili, Capsule, and a Novel Trimeric Autotransporter

Author:

Porsch Eric A.12,Kehl-Fie Thomas E.1,St. Geme Joseph W.12

Affiliation:

1. Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA

2. Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA

Abstract

ABSTRACT Kingella kingae is an emerging bacterial pathogen that is being recognized increasingly as an important etiology of septic arthritis, osteomyelitis, and bacteremia, especially in young children. Colonization of the posterior pharynx is a key step in the pathogenesis of K. kingae disease. Previous work established that type IV pili are necessary for K. kingae adherence to the respiratory epithelium. In this study, we set out to identify additional factors that influence K. kingae interactions with human epithelial cells. We found that genetic disruption of the gene encoding a predicted trimeric autotransporter protein called Knh ( K ingella N hhA h omolog) resulted in reduced adherence to human epithelial cells. In addition, we established that K. kingae elaborates a surface-associated polysaccharide capsule that requires a predicted ABC-type transporter export operon called ctrABCD for surface presentation. Furthermore, we discovered that the presence of a surface capsule interferes with Knh-mediated adherence to human epithelial cells by nonpiliated organisms and that maximal adherence in the presence of a capsule requires the predicted type IV pilus retraction machinery, PilT/PilU. On the basis of the data presented here, we propose a novel adherence mechanism that allows K. kingae to adhere efficiently to human epithelial cells while remaining encapsulated and more resistant to immune clearance. IMPORTANCE Kingella kingae is a Gram-negative bacterium that is being recognized increasingly as a cause of joint and bone infections in young children. The pathogenesis of disease due to K. kingae begins with bacterial colonization of the upper respiratory tract, and previous work established that surface hair-like fibers called type IV pili are necessary for K. kingae adherence to respiratory epithelial cells. In this study, we set out to identify additional factors that influence K. kingae interactions with respiratory epithelial cells. We discovered a novel surface protein called Knh that mediates K. kingae adherence and found that a surface-associated carbohydrate capsule interferes with the Knh-mediated adherence of organisms lacking pili. Further analysis revealed that pilus retraction is necessary for maximal Knh-mediated adherence in the presence of the capsule. Our results may lead to new strategies to prevent disease due to K. kingae and potentially other pathogenic bacteria.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3