Efficacy of CS-758, a Novel Triazole, against Experimental Fluconazole-Resistant Oropharyngeal Candidiasis in Mice

Author:

Kamai Yasuki1,Kubota Mikie1,Fukuoka Takashi1,Kamai Yoko2,Maeda Naoyuki2,Hosokawa Tsunemichi2,Shibayama Takahiro3,Uchida Katsuhisa4,Yamaguchi Hideyo4,Kuwahara Shogo5

Affiliation:

1. Biological Research Laboratories

2. Laboratory Animal Science and Toxicology Research Laboratories

3. Pharmacokinetics and Drug Delivery Research Laboratories, Sankyo Co., Ltd., Shinagawa-ku, Tokyo 140-8710

4. Teikyo University Institute of Medical Mycology, Hachioji, Tokyo 192-0395

5. Toho University School of Medicine, Ohta-ku, Tokyo 143-8540, Japan

Abstract

ABSTRACT The therapeutic efficacy of CS-758, a novel triazole, was evaluated against experimental murine oropharyngeal candidiasis induced by Candida albicans with various susceptibilities to fluconazole. Against infections induced by strains with various susceptibilities to fluconazole, the efficacy of fluconazole was strongly correlated with the MIC of fluconazole, as measured by the NCCLS method, and agreed with the NCCLS interpretive breakpoints, suggesting that the efficacies of new drugs could be predicted by using this model. The results of the fungal burden study corresponded with the results of the histopathological study. CS-758 exhibited potent in vitro activity (MICs, 0.004 to 0.06 μg/ml) against the strains used in this murine model including fluconazole-susceptible dose-dependent and fluconazole-resistant strains (fluconazole MICs, 16 to 64 μg/ml). CS-758 exhibited excellent efficacy against the infections induced by all the strains including a fluconazole-resistant strain, and the reductions in viable cell counts were significant at 10 and 50 mg/kg of body weight/dose. Fluconazole was not effective even at 50 mg/kg/dose against infections induced by a fluconazole-resistant strain (fluconazole MIC, 64 μg/ml). These results suggest that CS-758 is a promising compound for the treatment of oropharyngeal candidiasis including fluconazole-refractory infections.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3