A novel means to develop strain-specific DNA probes for detecting bacteria in the environment

Author:

Matheson V G1,Munakata-Marr J1,Hopkins G D1,McCarty P L1,Tiedje J M1,Forney L J1

Affiliation:

1. Center for Microbial Ecology, Michigan State University, East Lansing 48824-1325, USA.

Abstract

A simple means to develop strain-specific DNA probes for use in monitoring the movement and survival of bacteria in natural and laboratory ecosystems was developed. The method employed amplification of genomic DNA via repetitive sequence-based PCR (rep-PCR) using primers specific for repetitive extragenic palindromic (REP) elements, followed by cloning of the amplified fragments. The cloned fragments were screened to identify those which were strain specific, and these were used as probes for total genomic DNA isolated from microbial communities and subjected to rep-PCR. To evaluate the utility of the approach, we developed probes specific for Burkholderia cepacia G4 and used them to determine the persistence of the strain in aquifer sediment microcosms following bioaugmentation. Two of four probes tested were found to specifically hybridize to DNA fragments of the expected sizes in the rep-PCR fingerprint of B. cepacia G4 but not to 64 genetically distinct bacteria previously isolated from the aquifer. One of these probes, a 650-bp fragment, produced a hybridization signal when as few as 10 CFU of B. cepacia G4 were present in a mixture with 10(6) CFU nontarget strains, indicating that the sensitivity of these probes was comparable to those of other PCR-based detection methods. The probes were used to discriminate groundwater and microcosm samples that contained B. cepacia G4 from those which did not. False-positive results were obtained with a few samples, but these were readily identified by using hybridization to the second probe as a confirmation step. The general applicability of the method was demonstrated by constructing probes specific to three other environmental isolates.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference43 articles.

1. Phylogenetic identification and in situ detection of individual microbial cells without cultivation;Amann R. I.;Microbiol. Rev.,1995

2. Legionella contamination of dental-unit waters;Atlas R. M.;Appl. Environ. Microbiol.,1995

3. Ausubel F. M. R. Brent R. E. Kingston D. D. Moore J. G. Seidman J. A. Smith and K. Struhl (ed.). 1987. Current protocols in molecular biology. John Wiley and Sons New York N.Y.

4. Combined subtraction hybridization and polymerase chain reaction amplification procedure for isolation of strain-specific Rhizobium DNA sequences;Bjourson A. J.;Appl. Environ. Microbiol.,1992

5. Application of a strain-specific rRNA oligonucleotide probe targeting Pseudomonas fluorescens Ag1 in a mesocosm study of bacterial release into the environment;Boye M.;Appl. Environ. Microbiol.,1995

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3