Roles of the Fungal-Specific Lysine Biosynthetic Pathway in the Nematode-Trapping Fungus Arthrobotrys oligospora Identified through Metabolomics Analyses

Author:

Lu Hengqian12ORCID,Wang Shuai12,Gu Tiantian12,Sun Liangyin12,Wang Yongzhong123

Affiliation:

1. School of Life Sciences, Anhui University, Hefei 230601, China

2. Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, China

3. Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, China

Abstract

In higher fungi, lysine is biosynthesized via the α-aminoadipate (AAA) pathway, which differs from plants, bacteria, and lower fungi. The differences offer a unique opportunity to develop a molecular regulatory strategy for the biological control of plant parasitic nematodes, based on nematode-trapping fungi. In this study, in the nematode-trapping fungus model Arthrobotrys oligospora, we characterized the core gene in the AAA pathway, encoding α-aminoadipate reductase (Aoaar), via sequence analyses and through comparing the growth, and biochemical and global metabolic profiles of the wild-type and Aoaar knockout strains. Aoaar not only has α-aminoadipic acid reductase activity, which serves fungal L-lysine biosynthesis, but it also is a core gene of the non-ribosomal peptides biosynthetic gene cluster. Compared with WT, the growth rate, conidial production, number of predation rings formed, and nematode feeding rate of the ΔAoaar strain were decreased by 40–60%, 36%, 32%, and 52%, respectively. Amino acid metabolism, the biosynthesis of peptides and analogues, phenylpropanoid and polyketide biosynthesis, and lipid metabolism and carbon metabolism were metabolically reprogrammed in the ΔAoaar strains. The disruption of Aoaar perturbed the biosynthesis of intermediates in the lysine metabolism pathway, then reprogrammed amino acid and amino acid-related secondary metabolism, and finally, it impeded the growth and nematocidal ability of A. oligospora. This study provides an important reference for uncovering the role of amino acid-related primary and secondary metabolism in nematode capture by nematode-trapping fungi, and confirms the feasibility of Aoarr as a molecular target to regulate nematode-trapping fungi to biocontrol nematodes.

Funder

National Natural Science Foundation of China

Anhui Provincial Natural Science Foundation

Natural Science Foundation of Anhui Higher Education Institutions of China

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3