Use of Propidium Monoazide for Live/Dead Distinction in Microbial Ecology

Author:

Nocker Andreas1,Sossa-Fernandez Priscilla2,Burr Mark D.1,Camper Anne K.13

Affiliation:

1. Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717

2. Universidad de Antofagasta, Antofagasta, Chile

3. Department of Civil Engineering, Montana State University, Bozeman, Montana 59717

Abstract

ABSTRACT One of the prerequisites of making ecological conclusions derived from genetic fingerprints is that bacterial community profiles reflect the live portion of the sample of interest. Propidium monoazide is a membrane-impermeant dye that selectively penetrates cells with compromised membranes, which can be considered dead. Once inside the cells, PMA intercalates into the DNA and can be covalently cross-linked to it, which strongly inhibits PCR amplification. By using PCR after PMA treatment, the analysis of bacterial communities can theoretically be limited to cells with intact cell membranes. Four experiments were performed to study the usefulness of PMA treatment of mixed bacterial communities comprising both intact and compromised cells in combination with end-point PCR by generating community profiles from the following samples: (i) defined mixtures of live and isopropanol-killed cells from pure cultures of random environmental isolates, (ii) wastewater treatment plant influent spiked with defined ratios of live and dead cells, (iii) selected environmental communities, and (iv) a water sediment sample exposed to increasing heat stress. Regions of 16S rRNA genes were PCR amplified from extracted genomic DNA, and PCR products were analyzed by using denaturing gradient gel electrophoresis (DGGE). Results from the first two experiments show that PMA treatment can be of value with end-point PCR by suppressing amplification of DNA from killed cells. The last two experiments suggest that PMA treatment can affect banding patterns in DGGE community profiles and their intensities, although the intrinsic limitations of end-point PCR have to be taken into consideration.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3