A Randomly Integrated Transgenic H19 Imprinting Control Region Acquires Methylation Imprinting Independently of Its Establishment in Germ Cells

Author:

Matsuzaki Hitomi1,Okamura Eiichi1,Shimotsuma Motoshi1,Fukamizu Akiyoshi1,Tanimoto Keiji1

Affiliation:

1. Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan

Abstract

ABSTRACT The imprinted expression of the mouse Igf2/H19 locus is governed by the differential methylation of the imprinting control region (ICR), which is established initially in germ cells and subsequently maintained in somatic cells, depending on its parental origin. By grafting a 2.9-kbp H19 ICR fragment into a human β-globin yeast artificial chromosome in transgenic mice, we previously showed that the ICR could recapitulate imprinted methylation and expression at a heterologous locus, suggesting that the H19 ICR in the β-globin locus contained sufficient information to maintain the methylation mark (K. Tanimoto, M. Shimotsuma, H. Matsuzaki, A. Omori, J. Bungert, J. D. Engel, and A. Fukamizu, Proc. Natl. Acad. Sci. USA 102: 10250-10255, 2005). Curiously, however, the transgenic H19 ICR was not methylated in sperm, which was distinct from that seen in the endogenous locus. Here, we reevaluated the ability of the H19 ICR to mark the parental origin using more rigid criteria. In the testis, the methylation levels of the solitary 2.9-kbp transgenic ICR fragment varied significantly between six transgenic mouse lines. However, in somatic cells, the paternally inherited ICR fragment exhibited consistently higher methylation levels at five out of six randomly integrated sites in the mouse genome. These results clearly demonstrated that the H19 ICR could acquire parent-of-origin-dependent methylation after fertilization independently of the chromosomal integration site or the prerequisite methylation acquisition in male germ cells.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3