Five nucleotides found in RCTG motifs are essential for post-fertilization methylation imprinting of the H19 ICR in YAC transgenic mice

Author:

Matsuzaki Hitomi1,Takahashi Takuya2,Kuramochi Daichi2,Hirakawa Katsuhiko2,Tanimoto Keiji1ORCID

Affiliation:

1. Faculty of Life and Environmental Sciences, Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba , Tsukuba , Ibaraki  305-8577, Japan

2. Graduate school of Life and Environmental Sciences, University of Tsukuba , Tsukuba , Ibaraki  305-8577, Japan

Abstract

Abstract Genomic imprinting at the mouse Igf2/H19 locus is controlled by the H19 ICR, within which paternal allele-specific DNA methylation originating in sperm is maintained throughout development in offspring. We previously found that a 2.9 kb transgenic H19 ICR fragment in mice can be methylated de novo after fertilization only when paternally inherited, despite its unmethylated state in sperm. When the 118 bp sequence responsible for this methylation in transgenic mice was deleted from the endogenous H19 ICR, the methylation level of its paternal allele was significantly reduced after fertilization, suggesting the activity involving this 118 bp sequence is required for methylation maintenance at the endogenous locus. Here, we determined protein binding to the 118 bp sequence using an in vitro binding assay and inferred the binding motif to be RCTG by using a series of mutant competitors. Furthermore, we generated H19 ICR transgenic mice with a 5-bp substitution mutation that disrupts the RCTG motifs within the 118 bp sequence, and observed loss of methylation from the paternally inherited transgene. These results indicate that imprinted methylation of the H19 ICR established de novo during the post-fertilization period involves binding of specific factors to distinct sequence motifs within the 118 bp sequence.

Funder

JSPS

Ministry of Education, Culture, Sports, Science and Technology

Takeda Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3