Influence of postirradiation incubation temperature on recovery of radiation-injured Clostridium botulinum 62A spores

Author:

Chowdhury M S,Rowley D B,Anellis A,Levinson H S

Abstract

The number of colonies formed by unirradiated Clostridium botulinum 62A spores was independent of temperature, in the range from 20 to 45 degrees C (in 5 degrees C increments); no colonies developed at 50 degrees C. Spores irradiated at 1.2 or 1.4 Mrads produced more macrocolonies at 40 degrees C than at higher or lower temperatures. Apparently, radiation-injured spores were capable of repair of 40 degrees C than at the other temperatures studied. More than 99% of the radiation (1.2 Mrads) survivors were injured and were unable to form macrocolonies in the presence of 5% NaCl. The germinated radiation-injured spores were also sensitive to dilution, resulting in the loss of viability of 77 to 79% of the radiation survivors. At 30 and 40 degrees C, the irradiated spores did not differ significantly in the extent of germination (greater than 99% at both 30 and 40 degrees C), emergence (64% at 30 degrees C and 67% at 40 degrees C), and the maximum number of emerged cells that started to elongate (69% at 30 degrees C and 79% at 40 degrees C). However, elongation was remarkably more extensive at 40 degrees C than at 30 degrees C. Many elongated cells lysed within 48 h at 30 degrees C, indicating an impaired repair mechanism. If the radiation-injured spores were incubated at 40 degrees C in the recovery (repair) medium for 8 to 10 h, they germinated, emerged, and elongated extensively and were capable of repair. If, after 8 to 10 h at 40 degrees C, these cultures were shifted to 30 degrees C, the recovery at 30 increased by more than eightfold, resulting in similar colony counts at 30 and 40 degrees C. Thus, repair appeared to be associated with outgrowth. Repair did not occur in the presence of chloramphenicol at 40 degrees C, whereas penicillin had no effect, suggesting that the repair involved protein synthesis but did not require multiplication.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3