Author:
Riccobono Eleonora,Di Pilato Vincenzo,Di Maggio Tiziana,Revollo Carmen,Bartoloni Alessandro,Pallecchi Lucia,Rossolini Gian Maria
Abstract
ABSTRACTDuring the last decade, a significant diffusion of CTX-M-type extended-spectrum β-lactamases (ESBLs) was observed in commensalEscherichia colifrom healthy children in the Bolivian Chaco region, with initial dissemination of CTX-M-2, which was then replaced by CTX-M-15 and CTX-M-65. In this work, we demonstrate that the widespread dissemination of CTX-M-65 observed in this context was related to the polyclonal spreading of an IncI1 sequence type 71 (ST71) epidemic plasmid lineage. The structure of the epidemic plasmid population was characterized by complete sequencing of four representatives and PCR mapping of the remainder (n= 16). Sequence analysis showed identical plasmid backbones (similar to that of the reference IncI1 plasmid, R64) and a multiresistance region (MRR), which underwent local microevolution. The MRR harbored genes responsible for resistance to β-lactams, aminoglycosides, florfenicol, and fosfomycin (with microevolution mainly consisting of deletion events of resistance modules). TheblaCTX-M-65module harbored by the IncI1 ST71 epidemic plasmid was apparently derived from IncN-type plasmids, likely via IS26-mediated mobilization. The plasmid could be transferred by conjugation to several different enterobacterial species (Escherichia coli,Cronobacter sakazakii,Enterobacter cloacae,Klebsiella oxytoca,Klebsiella pneumoniae, andSalmonella enterica) and was stably maintained without selective pressure in these species, with the exception ofK. oxytocaandS. enterica. Fitness assays performed inE. colirecipients demonstrated that the presence of the epidemic plasmid was apparently not associated with a significant biological cost.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology