Central Nervous System Infection with Borna Disease Virus Causes Kynurenine Pathway Dysregulation and Neurotoxic Quinolinic Acid Production

Author:

Formisano Simone1,Hornig Mady12,Yaddanapudi Kavitha1,Vasishtha Mansi1,Parsons Loren H.3,Briese Thomas12,Lipkin W. Ian1245,Williams Brent L.14ORCID

Affiliation:

1. Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA

2. Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA

3. Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, USA

4. Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York, USA

5. Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA

Abstract

ABSTRACT Central nervous system infection of neonatal and adult rats with Borna disease virus (BDV) results in neuronal destruction and behavioral abnormalities with differential immune-mediated involvement. Neuroactive metabolites generated from the kynurenine pathway of tryptophan degradation have been implicated in several human neurodegenerative disorders. Here, we report that brain expression of key enzymes in the kynurenine pathway are significantly, but differentially, altered in neonatal and adult rats with BDV infection. Gene expression analysis of rat brains following neonatal infection showed increased expression of kynurenine amino transferase II (KATII) and kynurenine-3-monooxygenase (KMO) enzymes. Additionally, indoleamine 2,3-dioxygenase (IDO) expression was only modestly increased in a brain region- and time-dependent manner in neonatally infected rats; however, its expression was highly increased in adult infected rats. The most dramatic impact on gene expression was seen for KMO, whose activity promotes the production of neurotoxic quinolinic acid. KMO expression was persistently elevated in brain regions of both newborn and adult BDV-infected rats, with increases reaching up to 86-fold. KMO protein levels were increased in neonatally infected rats and colocalized with neurons, the primary target cells of BDV infection. Furthermore, quinolinic acid was elevated in neonatally infected rat brains. We further demonstrate increased expression of KATII and KMO, but not IDO, in vitro in BDV-infected C6 astroglioma cells. Our results suggest that BDV directly impacts the kynurenine pathway, an effect that may be exacerbated by inflammatory responses in immunocompetent hosts. Thus, experimental models of BDV infection may provide new tools for discriminating virus-mediated from immune-mediated impacts on the kynurenine pathway and their relative contribution to neurodegeneration. IMPORTANCE BDV causes persistent, noncytopathic infection in vitro yet still elicits widespread neurodegeneration of infected neurons in both immunoincompetent and immunocompetent hosts. Here, we show that BDV infection induces expression of key enzymes of the kynurenine pathway in brains of newborn and adult infected rats and cultured astroglioma cells, shunting tryptophan degradation toward the production of neurotoxic quinolinic acid. Thus, our findings newly implicate this metabolic pathway in BDV-induced neurodegeneration. Given the importance of the kynurenine pathway in a wide range of human infections and neurodegenerative and neuropsychiatric disorders, animal models of BDV infection may serve as important tools for contrasting direct viral and indirect antiviral immune-mediated impacts on kynurenine pathway dysregulation and the ensuing neurodevelopmental and neuropathological consequences.

Funder

HHS | National Institutes of Health

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3