Production of Plant-Specific Flavanones by Escherichia coli Containing an Artificial Gene Cluster

Author:

Hwang Eui Il1,Kaneko Masafumi1,Ohnishi Yasuo1,Horinouchi Sueharu1

Affiliation:

1. Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan

Abstract

ABSTRACT In plants, chalcones are precursors for a large number of flavonoid-derived plant natural products and are converted to flavanones by chalcone isomerase or nonenzymatically. Chalcones are synthesized from tyrosine and phenylalanine via the phenylpropanoid pathway involving phenylalanine ammonia lyase (PAL), cinnamate-4-hydroxylase (C4H), 4-coumarate:coenzyme A ligase (4CL), and chalcone synthase (CHS). For the purpose of production of flavanones in Escherichia coli , three sets of an artificial gene cluster which contained three genes of heterologous origins— PAL from the yeast Rhodotorula rubra , 4CL from the actinomycete Streptomyces coelicolor A3(2), and CHS from the licorice plant Glycyrrhiza echinata— were constructed. The constructions of the three sets were done as follows: (i) PAL , 4CL , and CHS were placed in that order under the control of the T7 promoter (P T7 ) and the ribosome-binding sequence (RBS) in the pET vector, where the initiation codons of 4CL and CHS were overlapped with the termination codons of the preceding genes; (ii) the three genes were transcribed by a single P T7 in front of PAL , and each of the three contained the RBS at appropriate positions; and (iii) all three genes contained both P T7 and the RBS. These pathways bypassed C4H, a cytochrome P-450 hydroxylase, because the bacterial 4CL enzyme ligated coenzyme A to both cinnamic acid and 4-coumaric acid. E. coli cells containing the gene clusters produced two flavanones, pinocembrin from phenylalanine and naringenin from tyrosine, in addition to their precursors, cinnamic acid and 4-coumaric acid. Of the three sets, the third gene cluster conferred on the host the highest ability to produce the flavanones. This is a new metabolic engineering technique for the production in bacteria of a variety of compounds of plant and animal origin.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 205 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3