Characterization of Poly-γ-Glutamate Hydrolase Encoded by a Bacteriophage Genome: Possible Role in Phage Infection of Bacillus subtilis Encapsulated with Poly-γ-Glutamate

Author:

Kimura Keitarou1,Itoh Yoshifumi1

Affiliation:

1. Division of Applied Microbiology, National Food Research Institute, Tsukuba 305-8642, Japan

Abstract

ABSTRACT Some Bacillus subtilis strains, including natto (fermented soybeans) starter strains, produce a capsular polypeptide of glutamate with a γ-linkage, called poly-γ-glutamate (γ-PGA). We identified and purified a monomeric 25-kDa degradation enzyme for γ-PGA (designated γ-PGA hydrolase, PghP) from bacteriophage ΦNIT1 in B. subtilis host cells. The monomeric PghP internally hydrolyzed γ-PGA to oligopeptides, which were then specifically converted to tri-, tetra-, and penta-γ-glutamates. Monoiodoacetate and EDTA both inhibited the PghP activity, but Zn 2+ or Mn 2+ ions fully restored the enzyme activity inhibited by the chelator, suggesting that a cysteine residue(s) and these metal ions participate in the catalytic mechanism of the enzyme. The corresponding pghP gene was cloned and sequenced from the phage genome. The deduced PghP sequence (208 amino acids) with a calculated M r of 22,939 was not significantly similar to any known enzyme. Thus, PghP is a novel γ-glutamyl hydrolase. Whereas phage ΦNIT1 proliferated in B. subtilis cells encapsulated with γ-PGA, phage BS5 lacking PghP did not survive well on such cells. Moreover, all nine phages that contaminated natto during fermentation produced PghP, supporting the notion that PghP is important in the infection of natto starters that produce γ-PGA. Analogous to polysaccharide capsules, γ-PGA appears to serve as a physical barrier to phage absorption. Phages break down the γ-PGA barrier via PghP so that phage progenies can easily establish infection in encapsulated cells.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3