Physical and functional analyses of the syrA and syrB genes involved in syringomycin production by Pseudomonas syringae pv. syringae

Author:

Xu G W1,Gross D C1

Affiliation:

1. Department of Plant Pathology, Washington State University, Pullman 99164-6430.

Abstract

The syrA and syrB genes involved in syringomycin production in Pseudomonas syringae pv. syringae B301D were identified from an EcoRI-pLAFR3 cosmid library and then physically and functionally analyzed in relation to plant pathogenicity. Homologous recombination of the genes required for syringomycin production from cosmids pGX183 (syrA) and pGX56 (syrB), respectively, introduced into nontoxigenic (Tox-) Tn5 mutants W4S2545 and W4S770 resulted in the concomitant restoration of toxin production and full virulence. The disease indices of the Tox+ strains obtained by recombination of the cloned, homologous DNA into the corresponding Tn5 mutant were essentially equivalent to that of strain B301D-R and significantly higher than those of W4S2545 and W4S770. A 12-kilobase (kb) EcoRI fragment from pGX183 was subcloned (i.e., pGX15) and found to contain the sequences necessary for syringomycin production. A map of pGX15 prepared by a combination of restriction endonuclease digestions and Tn5 mutagenesis showed that the syrA sequence was 2.3 to 2.8 kb. Marker exchange of syrA::Tn5 from pGX15 into B301D-R yielded nonpathogenic phenotypes, indicating that syrA is a regulatory gene since it is necessary for both syringomycin production and pathogenicity. The 4.9-kb EcoRI fragment from pGX56 was subcloned (i.e., pGX4) and shown to carry the syrB sequence which was 2.4 to 3.3 kb. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of protein extracts from B301D-R associated five proteins, ranging from approximately 130,000 to approximately 470,000 in molecular weight, with syringomycin production. The syrA and syrB genes were required for the formation of proteins SR4 (approximately 350,000) and SR5 (approximately 130,000), which are believed to be components of the syringomycin synthetase complex.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference41 articles.

1. The use of transposon mutagenesis in the isolation of nutritional and virulence mutants in two pathovars of Pseudomonas syringae;Anderson D. M.;Phytopathology,1985

2. A simple method for the largescale preparation of sucrose gradients;Baxter-Gabbard K. L.;FEBS Lett.,1972

3. Bacterial phytotoxin, syringomycin, induces a protein kinase-mediated phosphorylation of red beet plasma membrane polypeptides;Bidwai A. P.;Proc. Natl. Acad. Sci. USA,1987

4. A rapid alkaline extraction procedure for screening recombinant plasmid DNA;Birnboim H. C.;Nucleic Acids Res.,1979

5. Chatterjee A. K. and A. K. Vidaver. 1986. Genetics of pathogenicity factors: application to phytopathogenic bacteria p. 153-170. In D. S. Ingram and P. H. Williams (ed.) Advances in plant pathology vol. 4. Academic Press Inc. New York.

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3