Signal transduction in chemotaxis to oxygen in Escherichia coli and Salmonella typhimurium

Author:

Shioi J1,Tribhuwan R C1,Berg S T1,Taylor B L1

Affiliation:

1. Department of Biochemistry, School of Medicine, Loma Linda University, California 92350.

Abstract

Pathways previously proposed for sensory transduction in chemotaxis to oxygen (aerotaxis) involved either (i) cytochrome o, the electron transport system, and proton motive force or (ii) enzyme IIGlucose and the phosphoenolpyruvate:carbohydrate phosphotransferase system for active transport. This investigation distinguished between these possibilities. Aerotaxis was absent in a cyo cyd strain of Escherichia coli that lacked both cytochrome o and cytochrome d, which are the terminal oxidases for the branched electron transport system in E. coli. Aerotaxis, measured by either a spatial or temporal assay, was normal in E. coli strains that had a cyo+ or cyd+ gene or both. The membrane potential of all oxidase-positive strains was approximately -170 mV in aerated medium at pH 7.5. Behavioral responses to changes in oxygen concentration correlated with changes in proton motive force. Aerotaxis was normal in ptsG and ptsI strains that lack enzyme IIGlucose and enzyme I, respectively, and are deficient in the phosphotransferase system. A cya strain that is deficient in adenylate cyclase also had normal aerotaxis. We concluded that aerotaxis was mediated by the electron transport system and that either the cytochrome d or the cytochrome o branch of the pathway could mediate aerotaxis.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3