Coupling metabolism and chemotaxis-dependent behaviours by energy taxis receptors

Author:

Alexandre Gladys1

Affiliation:

1. Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, 1414 W. Cumberland Ave, Knoxville, TN 37996, USA

Abstract

Bacteria have evolved the ability to monitor changes in various physico-chemical parameters and to adapt their physiology and metabolism by implementing appropriate cellular responses to these changes. Energy taxis is a metabolism-dependent form of taxis and is the directed movement of motile bacteria in gradients of physico-chemical parameters that affect metabolism. Energy taxis has been described in diverse bacterial species and several dedicated energy sensors have been identified. The molecular mechanism of energy taxis has not been studied in as much detail as chemotaxis, but experimental evidence indicates that this behaviour differs from metabolism-independent taxis only by the presence of dedicated energy taxis receptors. Energy taxis receptors perceive changes in energy-related parameters, including signals related to the redox and/or intracellular energy status of the cell. The best-characterized energy taxis receptors are those that sense the redox state of the electron transport chain via non-covalently bound FAD cofactors. Other receptors shown to mediate energy taxis lack any recognizable redox cofactor or conserved energy-sensing motif, and some have been suggested to monitor changes in the proton motive force. The exact energy-sensing mechanism(s) involved are yet to be elucidated for most of these energy sensors. By monitoring changes in energy-related parameters, energy taxis receptors allow cells to couple motility behaviour with metabolism under diverse environmental conditions. Energy taxis receptors thus provide fruitful models to decipher how cells integrate sensory behaviours with metabolic activities.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3