Molecular Basis for Immunoglobulin M Specificity to Epitopes in Cryptococcus neoformans Polysaccharide That Elicit Protective and Nonprotective Antibodies

Author:

Nakouzi Antonio1,Valadon Philippe2,Nosanchuk Joshua1,Green Nancy3,Casadevall Arturo14

Affiliation:

1. Division of Infectious Diseases, Department of Medicine,1 and

2. Sidney Kimmel Cancer Center, San Diego, California 921212

3. Departments of Pediatrics3 and

4. Microbiology and Immunology,4 Albert Einstein College of Medicine, Bronx, New York 10461, and

Abstract

ABSTRACT The protective efficacy of antibodies (Abs) to Cryptococcus neoformans glucuronoxylomannan (GXM) is dependent on Ab fine specificity. Two clonally related immunoglobulin M monoclonal Abs (MAbs) (12A1 and 13F1) differ in fine specificity and protective efficacy, presumably due to variable (V)-region sequence differences resulting from somatic mutations. MAb 12A1 is protective and produces annular immunofluorescence (IF) on serotype D C. neoformans, while MAb 13F1 is not protective and produces punctate IF. To determine the Ab molecular determinants responsible for the IF pattern, site-directed mutagenesis of the MAb 12A1 heavy-chain V region (V H ) was followed by serological and functional studies of the various mutants. Changing two selected amino acids in the 12A1 V H binding cavity to the corresponding residues in the 13F1 V H altered the IF pattern from annular to punctate, reduced opsonic efficacy, and abolished recognition by an anti-idiotypic Ab. Analysis of the binding of the various mutants to peptide mimetics revealed that different amino acids were responsible for GXM binding and peptide specificity. The results suggest that V-region motifs associated with annular binding and opsonic activity may be predictive of Ab efficacy against C. neoformans . This has important implications for immunotherapy and vaccine design that are reinforced by the finding that GXM and peptide reactivities are determined by different amino acid residues.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3