A heat shock operon in Coxiella burnetti produces a major antigen homologous to a protein in both mycobacteria and Escherichia coli

Author:

Vodkin M H1,Williams J C1

Affiliation:

1. Rickettsial Diseases Laboratory, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21701-5011.

Abstract

A gene library from the DNA of Coxiella burnetii has been constructed in the cosmid vector pHC79. A particular clone, pJB196, reacted strongly with Coxiella-specific antibodies elicited in a number of different species of animals. This clone produced two abundant C. burnetii-specific polypeptides, a 14-kilodalton nonimmunoreactive protein and a 62-kilodalton immunoreactive protein. Sequencing identified two open reading frames, encoding polypeptides of 10.5 and 58.3 kilodaltons. The only transcriptional control element observed on the 5' side of the initiation codon resembled a heat shock promoter. This heat shock promoter was functionally regulated in Escherichia coli, since both proteins were produced by growth conditions at 37 degrees C and neither protein was detected at 23 degrees C. There were four sequences from the literature that were highly homologous (greater than 50%) to the 62-kilodalton protein from C. burnetii. Three were from Mycobacterium species and represent the immunodominant antigen of this genus. The other was from E. coli, detected as a gene that complements or suppresses a temperature-sensitive RNase activity. Since the recombinant protein was immunogenic, it may serve as an efficacious vaccine against C. burnetii and other pathogenic microorganisms that express the conserved antigen.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 204 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TGF-β/IFN-γ Antagonism in Subversion and Self-Defense of Phase II Coxiella burnetii - Infected Dendritic Cells;Infection and Immunity;2023-02-16

2. Coxiella burnetii;CABI Compendium;2022-01-07

3. Q fever;CABI Compendium;2022-01-07

4. Coxiella burnetii;Molecular Typing in Bacterial Infections, Volume II;2022

5. Coxiella burnetii-Infected NK Cells Release Infectious Bacteria by Degranulation;Infection and Immunity;2020-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3