Interaction of an Outer Membrane Protein of Enterotoxigenic Escherichia coli with Cell Surface Heparan Sulfate Proteoglycans

Author:

Fleckenstein James M.12,Holland James T.3,Hasty David L.34

Affiliation:

1. Medicine

2. Department of Medicine

3. Research Services, Veterans Affairs Medical Center, Memphis, Tennessee 38104

4. Department of Anatomy, University of Tennessee, Memphis, Tennessee 38163

Abstract

ABSTRACT We have previously shown that enterotoxigenic invasion protein A (Tia), a 25-kDa outer membrane protein encoded on an apparent pathogenicity island of enterotoxigenic Escherichia coli (ETEC) strain H10407, mediates attachment to and invasion into cultured human gastrointestinal epithelial cells. The epithelial cell receptor(s) for Tia has not been identified. Here we show that Tia interacts with cell surface heparan sulfate proteoglycans. Recombinant E. coli expressing Tia mediated invasion into wild-type epithelial cell lines but not invasion into proteoglycan-deficient cells. Furthermore, wild-type eukaryotic cells, but not proteoglycan-deficient eukaryotic cells, attached to immobilized polyhistidine-tagged recombinant Tia (rTia). Binding of epithelial cells to immobilized rTia was inhibited by exogenous heparan sulfate glycosaminoglycans but not by hyaluronic acid, dermatan sulfate, or chondroitin sulfate. Similarly, pretreatment of eukaryotic cells with heparinase I, but not pretreatment of eukaryotic cells with chrondroitinase ABC, inhibited attachment to rTia. In addition, we also observed heparin binding to both immobilized rTia and recombinant E. coli expressing Tia. Heparin binding was inhibited by a synthetic peptide representing a surface loop of Tia, as well as by antibodies directed against this peptide. Additional studies indicated that Tia, as a prokaryotic heparin binding protein, may also interact via sulfated proteoglycan molecular bridges with a number of mammalian heparan sulfate binding proteins. These findings suggest that the binding of Tia to host epithelial cells is mediated at least in part through heparan sulfate proteoglycans and that ETEC belongs on the growing list of pathogens that utilize these ubiquitous cell surface molecules as receptors.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference52 articles.

1. Anonymous. 1994. Foodborne outbreaks of enterotoxigenic Escherichia coli—Rhode Island and New Hampshire, 1993. Morb. Mortal. Wkly. Rep.43:87-89.

2. Anonymous. 1999. New frontiers in the development of vaccines against enterotoxinogenic (ETEC) and enterohaemorrhagic (EHEC) E. coli infections. Part I. Wkly. Epidemiol. Rec.74:98-101.

3. The Regulated Outer Membrane Protein Omp21 from Comamonas acidovorans Is Identified as a Member of a New Family of Eight-Stranded β-Sheet Proteins by Its Sequence and Properties

4. Amino acid substitutions in naturally occurring variants of ail result in altered invasion activity

5. Bernfield, M., M. Gotte, P. W. Park, O. Reizes, M. L. Fitzgerald, J. Lincecum, and M. Zako. 1999. Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem.68:729-777.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3