Adaptation of Sucrose Metabolism in the Escherichia coli Wild-Type Strain EC3132†

Author:

Jahreis Knut1,Bentler Lars1,Bockmann Jürgen1,Hans Stephan1,Meyer Astrid1,Siepelmeyer Jörg1,Lengeler Joseph W.1

Affiliation:

1. Arbeitsgruppe Genetik, Fachbereich Biologie/Chemie, Universität Osnabrück, D-49069 Osnabrück, Germany

Abstract

ABSTRACT Although Escherichia coli strain EC3132 possesses a chromosomally encoded sucrose metabolic pathway, its growth on low sucrose concentrations (5 mM) is unusually slow, with a doubling time of 20 h. In this report we describe the subcloning and further characterization of the corresponding csc genes and adjacent genes. The csc regulon comprises three genes for a sucrose permease, a fructokinase, and a sucrose hydrolase (genes cscB , cscK , and cscA , respectively). The genes are arranged in two operons and are negatively controlled at the transcriptional level by the repressor CscR. Furthermore, csc gene expression was found to be cyclic AMP-CrpA dependent. A comparison of the genomic sequences of the E. coli strains EC3132, K-12, and O157:H7 in addition to Salmonella enterica serovar Typhimurium LT2 revealed that the csc genes are located in a hot spot region for chromosomal rearrangements in enteric bacteria. The comparison further indicated that the csc genes might have been transferred relatively recently to the E. coli wild-type EC3132 at around the time when the different strains of the enteric bacteria diverged. We found evidence that a mobile genetic element, which used the gene argW for site-specific integration into the chromosome, was probably involved in this horizontal gene transfer and that the csc genes are still in the process of optimal adaptation to the new host. Selection for such adaptational mutants growing faster on low sucrose concentrations gave three different classes of mutants. One class comprised cscR (Con) mutations that expressed all csc genes constitutively. The second class constituted a cscKo operator mutation, which became inducible for csc gene expression at low sucrose concentrations. The third class was found to be a mutation in the sucrose permease that caused an increase in transport activity.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3