Plasmid-based and genome-based expression of recombinant T1 lipase in sucrose-utilizing E. coli strain W

Author:

Yusof Siti Hajar1,Leow Adam Thean Chor1,Raja Abd Rahman Raja Noor Zaliha1,Ngalimat Mohamad Syazwan1,Lim Si Jie1,Sabri Suriana1

Affiliation:

1. Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.

Abstract

Given its thermoalkaliphilic properties, T1 lipase holds significant potential for diverse industrial applications. However, traditional expression methods in Escherichia coli, specifically the plasmid-based system, present challenges of exerting metabolic burden on host cells and elevated costs due to antibiotic usage. This study addresses these issues by pioneering the expression of recombinant T1 lipase in a sucrose-utilizing E. coli strain W, using molasses as an economical carbon source. The gene cassette (KIKO plasmid), containing the T1 lipase gene regulated by tac and trc promoters, was integrated into the E. coli genome via the λ Red recombinase system. T1 lipase was optimally expressed in shake flasks at 16°C and a 3% molasses concentration in M9 medium with 0.8 mM IPTG as inducer, yielding 0.44 U/mL activity in the genome-based system compared to 0.94 U/mL in the plasmid-based system. This study not only underscores the potential of employing sucrose-utilizing E. coli strain for industrial recombinant protein production but also highlights the need for further optimization of genome-based expression systems. It offers an alternative to reduce costs and enhance sustainability in the stable production of industrially relevant enzymes like T1 lipase, without the need for antibiotic supplementation, and has broader implications for leveraging inexpensive carbon sources like molasses in biotechnological applications.

Funder

Universiti Putra Malaysia

Publisher

Malaysian Society for Molecular Biology and Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3