Affiliation:
1. Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, Greifswald University, Greifswald, Germany
Abstract
ABSTRACT
Quorum sensing, the bacterial cell-cell communication by small molecules, controls important processes such as infection and biofilm formation. Therefore, it is a promising target with several therapeutic and technical applications besides its significant ecological relevance. Enzymes inactivating
N
-acyl-
l
-homoserine lactones, the most common class of communication molecules among Gram-negative proteobacteria, mainly belong to the groups of quorum-quenching lactonases or quorum-quenching acylases. However, identification, characterization, and optimization of these valuable biocatalysts are based on a very limited number of fundamentally different methods with their respective strengths and weaknesses. Here, a (bio)chemical activity assay is described, which perfectly complements the other methods in this field. It enables continuous and high-throughput activity measurements of purified and unpurified quorum-quenching enzymes within several minutes. For this, the reaction products released by quorum-quenching lactonases and quorum-quenching acylases are converted either by a secondary enzyme or by autohydrolysis to
l
-homoserine. In turn,
l
-homoserine is detected by the previously described calcein assay, which is sensitive to α-amino acids with free N and C termini. Besides its establishment, the method was applied to the characterization of three previously undescribed quorum-quenching lactonases and variants thereof and to the identification of quorum-quenching acylase-expressing
Escherichia coli
clones in an artificial library. Furthermore, this study indicates that porcine aminoacylase 1 is not active toward
N
-acyl-
l
-homoserine lactones as published previously but instead converts the autohydrolysis product
N
-acyl-
l
-homoserine.
IMPORTANCE
In this study, a novel method is presented for the identification, characterization, and optimization of quorum-quenching enzymes that are active toward
N
-acyl-
l
-homoserine lactones. These are the most common communication molecules among Gram-negative proteobacteria. The activity assay is a highly valuable complement to the available analytical tools in this field. It will facilitate studies on the environmental impact of quorum-quenching enzymes and contribute to the development of therapeutic and technical applications of this promising enzyme class.
Funder
Studienstiftung des Deutschen Volkes
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献