Sequential Evolution of Vancomycin-Intermediate Resistance Alters Virulence in Staphylococcus aureus: Pharmacokinetic/Pharmacodynamic Targets for Vancomycin Exposure

Author:

Lenhard Justin R.12,Brown Tanya12,Rybak Michael J.3,Meaney Calvin J.12,Norgard Nicholas B.1,Bulman Zackery P.12,Brazeau Daniel A.4,Gill Steven R.5,Tsuji Brian T.12

Affiliation:

1. Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA

2. New York State Center of Excellence in Life Sciences and Bioinformatics, University at Buffalo, Buffalo, New York, USA

3. Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan, USA

4. Department of Pharmaceutical Sciences, University of New England, Portland, Maine, USA

5. Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA

Abstract

ABSTRACT Staphylococcus aureus possesses exceptional virulence and a remarkable ability to adapt in the face of antibiotic therapy. We examined the in vitro evolution of S. aureus in response to escalating vancomycin exposure by evaluating bacterial killing and the progression of resistance. A hollow-fiber infection model was utilized to simulate human doses of vancomycin increasing from 0.5 to 4 g every 12 h (q12h) versus a high inoculum (10 8 CFU/ml) of methicillin-resistant S. aureus (MRSA) USA300 and USA400. Host-pathogen interactions using Galleria mellonella and accessory gene regulator ( agr ) expression were studied in serially obtained isolates. In both USA300 and USA400 MRSA isolates, vancomycin exposure up to 2 g q12h resulted in persistence and regrowth, whereas 4 g administered q12h achieved sustained killing against both strains. As vancomycin exposure increased from 0.5 to 2 g q12h, the bacterial population shifted toward vancomycin-intermediate resistance, and collateral increases in the MICs of daptomycin and televancin were observed over 10 days. Guideline-recommended exposure of a ratio of the area under the concentration-time curve for the free, unbound fraction of the drug to the MIC ( f AUC/MIC ratio) of 200 displayed a 0.344-log bacterial reduction in area, whereas f AUC/MICs of 371 and 554 were needed to achieve 1.00- and 2.00-log reductions in area, respectively. The stepwise increase in resistance paralleled a decrease in G. mellonella mortality ( P = 0.021) and a gradual decline of RNAIII expression over 10 days. Currently recommended doses of vancomycin resulted in amplification of resistance and collateral damage to other antibiotics. Decreases in agr expression and virulence during therapy may be an adaptive mechanism of S. aureus persistence.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3