Structure–activity relationships of antibacterial peptides

Author:

Ciulla Maria Gessica12ORCID,Gelain Fabrizio12ORCID

Affiliation:

1. Institute for Stem‐Cell Biology, Regenerative Medicine and Innovative Therapies IRCCS Casa Sollievo della Sofferenza San Giovanni Rotondo Italy

2. Center for Nanomedicine and Tissue Engineering (CNTE) ASST Grande Ospedale Metropolitano Niguarda Milan Italy

Abstract

AbstractAntimicrobial peptides play a crucial role in innate immunity, whose components are mainly peptide‐based molecules with antibacterial properties. Indeed, the exploration of the immune system over the past 40 years has revealed a number of natural peptides playing a pivotal role in the defence mechanisms of vertebrates and invertebrates, including amphibians, insects, and mammalians. This review provides a discussion regarding the antibacterial mechanisms of peptide‐based agents and their structure–activity relationships (SARs) with the aim of describing a topic that is not yet fully explored. Some growing evidence suggests that innate immunity should be strongly considered for the development of novel antibiotic peptide‐based libraries. Also, due to the constantly rising concern of antibiotic resistance, the development of new antibiotic drugs is becoming a priority of global importance. Hence, the study and the understanding of defence phenomena occurring in the immune system may inspire the development of novel antibiotic compound libraries and set the stage to overcome drug‐resistant pathogens. Here, we provide an overview of the importance of peptide‐based antibacterial sources, focusing on accurately selected molecular structures, their SARs including recently introduced modifications, their latest biotechnology applications, and their potential against multi‐drug resistant pathogens. Last, we provide cues to describe how antibacterial peptides show a better scope of action selectivity than several anti‐infective agents, which are characterized by non‐selective activities and non‐targeted actions toward pathogens.

Funder

Istituto Nazionale per l'Assicurazione Contro Gli Infortuni sul Lavoro

Ministero della Salute

Publisher

Wiley

Subject

Applied Microbiology and Biotechnology,Biochemistry,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3