A Novel Glycoside Hydrolase Family 113 Endo-β-1,4-Mannanase from Alicyclobacillus sp. Strain A4 and Insight into the Substrate Recognition and Catalytic Mechanism of This Family

Author:

Xia Wei12,Lu Haiqiang3,Xia Mengjuan1,Cui Ying1,Bai Yingguo1,Qian Lichun2,Shi Pengjun1,Luo Huiying1,Yao Bin1

Affiliation:

1. Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China

2. College of Animal Science, Zhejiang University, Hangzhou, People's Republic of China

3. College of Food Science and Technology, Hebei Agricultural University, Baoding, People's Republic of China

Abstract

ABSTRACT Few members of glycoside hydrolase (GH) family 113 have been characterized, and information on substrate recognition by and the catalytic mechanism of this family is extremely limited. In the present study, a novel endo-β-1,4-mannanase of GH 113, Man113A, was identified in thermoacidophilic Alicyclobacillus sp. strain A4 and found to exhibit both hydrolytic and transglycosylation activities. The enzyme had a broad substrate spectrum, showed higher activities on glucomannan than on galactomannan, and released mannobiose and mannotriose as the main hydrolysis products after an extended incubation. Compared to the only functionally characterized and structure-resolved counterpart Alicyclobacillus acidocaldarius ManA ( Aa ManA) of GH 113, Man113A showed much higher catalytic efficiency on mannooligosaccharides, in the order mannohexaose ≈ mannopentaose > mannotetraose > mannotriose, and required at least four sugar units for efficient catalysis. Homology modeling, molecular docking analysis, and site-directed mutagenesis revealed the vital roles of eight residues (Trp13, Asn90, Trp96, Arg97, Tyr196, Trp274, Tyr292, and Cys143) related to substrate recognition by and catalytic mechanism of GH 113. Comparison of the binding pockets and key residues of β-mannanases of different families indicated that members of GH 113 and GH 5 have more residues serving as stacking platforms to support −4 to −1 subsites than those of GH 26 and that the residues preceding the acid/base catalyst are quite different. Taken as a whole, this study elucidates substrate recognition by and the catalytic mechanism of GH 113 β-mannanases and distinguishes them from counterparts of other families.

Funder

National High Technology Research and Development Program of China

National Science Fund for Distinguished Young Scholars

National Natural Science Foundation of China

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3