Identification and Characterization of a Novel Mannanase from Klebsiella grimontii

Author:

Chen Changzheng12,Li Kuikui1ORCID,Li Tang1ORCID,Li Junyan1,Liu Qishun13,Yin Heng12

Affiliation:

1. Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

2. University of Chinese Academy of Sciences, Beijing 100190, China

3. Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Laboratory of Se-enriched Food Development, Ankang 725000, China

Abstract

Konjac glucomannan (KGM) is a natural polysaccharide derived from konjac, which has been widely used in various fields due to its numerous beneficial properties. However, the high viscosity and water absorption of KGM limit its application. Compared with KGM, Konjac glucomannan oligosaccharides (KGMOS) have higher water solubility and stronger application value. In this paper, a novel mannanase KgManA was cloned from Klebsiella grimontii to develop a new KGMOS-producing enzyme. Bioinformatic analysis shows that the structural similarity between KgManA and other enzymes was less than 18.33%. Phylogenetic analysis shows that KgManA shares different branches with the traditional mannanases containing the CMB35 domain, indicating that it is a novel mannanase. Then, the enzymatic properties were determined and substrate specificity was characterized. Surprisingly, KgManA is stable in a very wide pH range of 3.0 to 10.0; it has a special substrate specificity and seems to be active only for mannans without galactose in the side chain. Additionally, the three-dimensional structure of the enzyme was simulated and molecular docking of the mannotetraose substrate was performed. As far as we know, this is the first report to characterize the enzymatic properties and to simulate the structure of mannanase from K. grimontii. This work will contribute to the development and characterization of novel K. grimontii-derived mannanases. The above results indicate that KgManA is a promising tool for the production of KGMOS.

Funder

ANSO Collaborative Research Program

key science and technology planning project of China tobacco company Yunnan branch

Shaanxi Provincial Key R&D Program

Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/National-Local Joint Engineering Laboratory of Se-enriched Food Development

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3