Relationship between polyadenylated and nonpolyadenylated herpes simplex virus type 1 latency-associated transcripts

Author:

Devi-Rao G B1,Goodart S A1,Hecht L M1,Rochford R1,Rice M K1,Wagner E K1

Affiliation:

1. Department of Molecular Biology and Biochemistry, University of California, Irvine 92717.

Abstract

RNA from the region of the genome encoding herpes simplex virus type 1 latency-associated transcripts (LATs) expressed during lytic infection yields low abundances of both polyadenylated and nonpolyadenylated forms. As has been previously shown for latent infection (A. T. Dobson, F. Sedarati, G. Devi-Rao, W. M. Flanagan, M. J. Farrell, J. G. Stevens, E. K. Wagner, and L. T. Feldman. J. Virol. 63:3844-3851, 1989), all lytic-phase expression of such transcripts requires promoter elements situated approximately 600 bases 5' of the previously mapped 5' end of the poly(A)- forms of LAT. Transient expression experiments revealed no other clear promoter elements within this region, and relatively small amounts of latent-phase transcripts initiating at the same site as observed for lytic-phase LAT could be detected by RNase protection assays. In the lytic phase of infection, the most abundant forms of polyadenylated LAT extended 1,600 bases from the initiation site near the LAT promoter to a potential splice donor site. Poly(A)- LAT species were not recovered in significant amounts from lytically infected neuroblastoma cells, but such RNA from lytically infected rabbit skin cells comapped with poly(A)- LAT from latently infected sensory neurons. Both map between canonical 5' splice donor and 3' splice acceptor site 1,950 bases apart. Poly(A)- LAT cochromatographed with uncapped rRNA on m-aminophenyl boronate agarose under conditions in which capped mRNA was bound. All of these data confirm the previously presented scheme for the expression of poly(A)- LAT as a stable intron derived from the splicing of a large primary transcript; however, we were unable to detect the spliced polyadenylated product of this splicing reaction.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3