Author:
Puleo J R,Bergstrom S L,Peeler J T,Oxborrow G S
Abstract
Simulation of a heat process used in the terminal dry-heat decontamination of the Viking spacecraft is reported. Naturally occurring airborne bacterial spores were collected on Teflon ribbons in selected spacecraft assembly areas and subsequently subjected to dry heat. Thermal inactivation experiments were conducted at 105, 111.7, 120, 125, 130, and 135 degrees C with a moisture level of 1.2 mg of water per liter. Heat survivors were recovered at temperatures of 135 degrees C when a 30-h heating cycle was employed. Survivors were recovered from all cycles studied and randomly selected for identification. The naturally occurring spore population was reduced an average of 2.2 to 4.4 log cycles from 105 to 135 degrees C. Heating cycles of 5 and 15 h at temperature were compared with the standard 30-h cycle at 111.7, 120, and 125 degrees C. No significant differences in inactivation (alpha = 0.05) were observed between 111.7 and 120 degrees C. The 30-h cycle differs from the 5-and 15-h cycles at 125 degrees C. Thus, the heating cycle can be reduced if a small fraction (about 10-3 to 10-4) of very resistant spores can be tolerated.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献