Dry heat sterilization modelling for spacecraft applications

Author:

Flax Brian1,Tortora Andrew1,Yeung Yen1,Schubert Wayne W.2,McDonnell Gerald1ORCID

Affiliation:

1. Microbiological Quality & Sterility Assurance, Johnson & Johnson Raritan New Jersey USA

2. Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory California Institute of Technology Pasadena California USA

Abstract

Abstract Aims Inactivation processes using heat are widely used for disinfection and sterilization. Dry heat sterilization of spacecraft equipment has been the preferred microbial inactivation method as part of interplanetary travel protection strategies. An antimicrobial model, based on temperature and exposure time based on experimental data, was developed to provide reliable sterilization processes to be used for interplanetary applications. Methods and Results Bacillus atrophaeus spores, traditionally used to challenge dry heat sterilization processes, were tested over a range of temperatures in comparison with spores of Bacillus canaveralius that have been shown to have a higher heat resistance profile. D-value and Z-values were determined and used to develop a mathematical model for parametric sterilization applications. The impact of the presence of a contaminating soil, representative of Mars dust, was also tested to verify the practical application of the model to reduce the risk of microbial contamination in such environments. Conclusion The sterilization model developed can be used as an intrinsic part of risk reduction strategies for interplanetary protection. Significance and Impact Forward and backward planetary protection strategies to reduce the risks of microbial contamination during interplanetary exploration and research is an important consideration. The development of a modern sterilization model, with consideration of microorganisms identified with higher levels of heat resistance than traditionally deployed in terrestrial applications, allows for the consideration of optimal inactivation processes to define minimum criteria for engineering design. The ability to inactivate living microorganisms, as well as to degrade biomolecules, provides a reliable method to reduce the risk of known and potentially unknown contaminants in future applications.

Funder

National Aeronautics and Space Administration

Microbiological Quality & Sterility Assurance, Johnson & Johnson

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3