Genotypic Identification of Erythromycin-Resistant Campylobacter Isolates as Helicobacter Species and Analysis of Resistance Mechanism

Author:

Kuijper Ed J.1,Stevens Servi1,Imamura Toshihiro2,de Wever Bob3,Claas Eric C. J.1

Affiliation:

1. Department of Medical Microbiology, Center of Infectious Diseases, University Medical Center of Leiden, Leiden

2. Stu Nagasaki University, Nagasaki, Japan

3. Department of Medical Microbiology, University Medical Center of Amsterdam, Amsterdam, The Netherlands

Abstract

ABSTRACT The correct identification of Campylobacter species remains cumbersome, especially when conventional biochemical tests and antimicrobial susceptibility patterns are used for a phenotypical identification. Correct identification is important for epidemiological purposes and for studying changes in antimicrobial resistance patterns. Six erythromycin-resistant campylobacter strains were investigated by 16S ribosomal DNA (rDNA) sequencing, 23S rDNA sequencing, and restriction fragment length polymorphism analysis of a putative heme-copper oxidase domain described as being specific for thermophilic Campylobacter species. Three erythromycin-resistant isolates from feces of human immunodeficiency virus (HIV)-seropositive patients with diarrhea and one blood isolate of from HIV-seropositive patient with cellulitis were identified by 16S rDNA analysis as Helicobacter cinaedi , whereas 23S rDNA sequencing suggested Wolinella succinogenes . The 16S rDNA sequence data of fecal isolates of two patients with travelers diarrhea revealed Helicobacter pullorum and were also in contrast with 23S rDNA sequencing. Of 4 H. cinaedi isolates, 1 contained the putative heme-copper oxidase gene thought to be specific for thermophilic species. The six erythromycin-resistant Helicobacter species had a similar point mutation A2143G in 23S rDNA resembling the macrolides resistance in Helicobacter pylori. We conclude that 16S rDNA sequencing should be preferred to 23S rDNA analysis and that macrolide-resistant campylobacter strains should be investigated by this approach for a correct identification.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3