Interaction of Native and Mutant MecI Repressors with Sequences That Regulate mecA , the Gene Encoding Penicillin Binding Protein 2a in Methicillin-Resistant Staphylococci

Author:

Sharma Vijay K.1,Hackbarth Corinne J.2,Dickinson Tanja M.3,Archer Gordon L.13

Affiliation:

1. Departments of Medicine1 and

2. Department of Medicine, University of California, San Francisco, California2

3. Microbiology/Immunology,3 Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, Virginia, and

Abstract

ABSTRACT Methicillin resistance in staphylococci is mediated by PBP2a, a penicillin binding protein with low affinity for β-lactam antibiotics. The gene encoding PBP2a, mecA , is transcriptionally regulated in some clinical isolates by mecR1 and mecI , genes divergently transcribed from mecA that encode a signal transducer and repressor, respectively. The biochemical basis of MecI-mediated mecA transcriptional repression was investigated by using purified MecI. In DNase I protection studies, MecI protected a 30-bp palindrome encompassing the predicted mecA −10 and the mecR1 −35 promoter sequences. The larger palindrome contained 15 bp of dyad symmetry within which was a smaller 6-bp palindrome. Electrophoretic mobility shift assays established a requirement for the entire 15-bp half-site for initial repressor binding. Fragments containing the 30-bp palindrome and the entire mecA-mecR1 intergenic region were retarded in gels as multiple discrete bands varying in molecular size, characteristic of cooperative DNA binding. Glutaraldehyde cross-linking confirmed oligomerization of repressor in solution. A naturally occurring MecI mutant (MecI*; D39G) repressed mecA transcription sixfold less well than the wild type in vivo. Although MecI* protected the same target sequences and exhibited similar gel shift patterns to MecI, 5- to 10-fold more protein was required. MecI* exhibited defective oligomerization in solution, suggesting that the MecI amino terminus is important in protein-protein interactions and that protein oligomerization is necessary for optimum repression.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3