Plasmid-Mediated Quinolone Resistance in Clinical Isolates of Escherichia coli from Shanghai, China

Author:

Wang Minggui12,Tran John H.2,Jacoby George A.3,Zhang Yingyuan1,Wang Fu1,Hooper David C.2

Affiliation:

1. Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China

2. Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114

3. Infectious Disease Department, Lahey Clinic, Burlington, Massachusetts 01805

Abstract

ABSTRACT Although quinolone resistance usually results from chromosomal mutations, recent studies indicate that quinolone resistance can also be plasmid mediated. The gene responsible, qnr , is distinct from the known quinolone resistance genes and in previous studies seemed to be restricted to Klebsiella pneumoniae and Escherichia coli isolates from the University of Alabama in Birmingham, where this resistance was discovered. In Shanghai, the frequency of ciprofloxacin resistance in E. coli has exceeded 50% since 1993. Seventy-eight unique ciprofloxacin-resistant clinical isolates of E. coli from Shanghai hospitals were screened for the qnr gene by colony blotting and Southern hybridization of plasmid DNA. Conjugation experiments were done with azide-resistant E. coli J53 as a recipient with selection for plasmid-encoded antimicrobial resistance (chloramphenicol, gentamicin, or tetracycline) and azide counterselection. qnr genes were sequenced, and the structure of the plasmid DNA adjacent to qnr was analyzed by primer walking with a sequential series of outward-facing sequencing primers with plasmid DNA templates purified from transconjugants. Six (7.7%) of 78 strains gave a reproducible hybridization signal with a qnr gene probe on colony blots and yielded strong signals on plasmid DNA preparations. Quinolone resistance was transferred from all six probe-positive strains. Transconjugants had 16- to 250-fold increases in the MICs of ciprofloxacin relative to that of the recipient. All six strains contained qnr with a nucleotide sequence identical to that originally reported, except for a single nucleotide change (CT A →CT G at position 537) encoding the same amino acid. qnr was located in complex In4 family class 1 integrons. Two completely sequenced integrons were designated In36 and In37. Transferable plasmid-mediated quinolone resistance associated with qnr is thus prevalent in quinolone-resistant clinical strains of E. coli from Shanghai and may contribute to the rapid increase in bacterial resistance to quinolones in China.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3