Global Transcriptional and Physiological Responses of Saccharomyces cerevisiae to Ammonium, l -Alanine, or l -Glutamine Limitation

Author:

Usaite Renata1,Patil Kiran R.1,Grotkjær Thomas1,Nielsen Jens1,Regenberg Birgitte12

Affiliation:

1. Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Denmark, Kgs. Lyngby, Denmark

2. Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany

Abstract

ABSTRACT The yeast Saccharomyces cerevisiae encounters a range of nitrogen sources at various concentrations in its environment. The impact of these two parameters on transcription and metabolism was studied by growing S. cerevisiae in chemostat cultures with l -glutamine, l -alanine, or l -ammonium in limitation and by growing cells in an excess of ammonium. Cells grown in l -alanine-limited cultures had higher biomass yield per nitrogen mole (19%) than those from ammonium-limited cultures. Whole-genome transcript profiles were analyzed with a genome-scale metabolic model that suggested increased anabolic activity in l -alanine-limited cells. The changes in these cells were found to be focused around pyruvate, acetyl coenzyme A, glyoxylate, and α-ketoglutarate via increased levels of ALT1 , DAL7 , PYC1 , GDH2 , and ADH5 and decreased levels of GDH3 , CIT2 , and ACS1 transcripts. The transcript profiles were then clustered. Approximately 1,400 transcripts showed altered levels when amino acid-grown cells were compared to those from ammonium. Another 400 genes had low transcript levels when ammonium was in excess. Overrepresentation of the GATAAG element in their promoters suggests that nitrogen catabolite repression (NCR) may be responsible for this regulation. Ninety-one genes had transcript levels on both l -glutamine and ammonium that were decreased compared to those on l -alanine, independent of the concentration. The GATAAG element in these genes suggests two groups of NCR-responsive genes, those that respond to high levels of nitrogen and those that respond to levels below 30 μM. In conclusion, our results reveal that the nitrogen source has substantial influence on the transcriptome of yeasts and that transcriptional changes may be correlated to physiology via a metabolic model.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3