Abstract
AbstractMucins are present in mucosal membranes throughout the body and play a key role in the microbe clearance and infection prevention. Understanding the metabolic responses of pathogens to mucins will further enable the development of protective approaches against infections. We update the genome-scale metabolic network reconstruction (GENRE) of one such pathogen, Pseudomonas aeruginosa PA14, through metabolic coverage expansion, format update, extensive annotation addition, and literature-based curation to produce iPau21. We then validate iPau21 through MEMOTE, growth rate, carbon source utilization, and gene essentiality testing to demonstrate its improved quality and predictive capabilities. We then integrate the GENRE with transcriptomic data in order to generate context-specific models of P. aeruginosa metabolism. The contextualized models recapitulated known phenotypes of unaltered growth and a differential utilization of fumarate metabolism, while also revealing an increased utilization of propionate metabolism upon MUC5B exposure. This work serves to validate iPau21 and demonstrate its utility for providing biological insights.
Funder
U.S. Department of Health & Human Services | National Institutes of Health
Foundation for the National Institutes of Health
Deutsche Forschungsgemeinschaft
National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Drug Discovery,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献