Model-driven characterization of functional diversity of Pseudomonas aeruginosa clinical isolates with broadly representative phenotypes

Author:

Islam Mohammad Mazharul1ORCID,Kolling Glynis L.1,Glass Emma M.1,Goldberg Joanna B.2,Papin Jason A.1ORCID

Affiliation:

1. Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA

2. Department of Pediatrics, Emory University, Atlanta, GA 30322, USA

Abstract

Pseudomonas aeruginosa is a leading cause of infections in immunocompromised individuals and in healthcare settings. This study aims to understand the relationships between phenotypic diversity and the functional metabolic landscape of P. aeruginosa clinical isolates. To better understand the metabolic repertoire of P. aeruginosa in infection, we deeply profiled a representative set from a library of 971 clinical P. aeruginosa isolates with corresponding patient metadata and bacterial phenotypes. The genotypic clustering based on whole-genome sequencing of the isolates, multilocus sequence types, and the phenotypic clustering generated from a multi-parametric analysis were compared to each other to assess the genotype–phenotype correlation. Genome-scale metabolic network reconstructions were developed for each isolate through amendments to an existing PA14 network reconstruction. These network reconstructions show diverse metabolic functionalities and enhance the collective P. aeruginosa pangenome metabolic repertoire. Characterizing this rich set of clinical P. aeruginosa isolates allows for a deeper understanding of the genotypic and metabolic diversity of the pathogen in a clinical setting and lays a foundation for further investigation of the metabolic landscape of this pathogen and host-associated metabolic differences during infection.

Funder

Foundation for the National Institutes of Health

Publisher

Microbiology Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3