Engineering of Adenovirus Vectors Containing Heterologous Peptide Sequences in the C Terminus of Capsid Protein IX

Author:

Dmitriev Igor P.1,Kashentseva Elena A.1,Curiel David T.12

Affiliation:

1. Division of Human Gene Therapy, Departments of Medicine, Pathology, and Surgery

2. Gene Therapy Center, University of Alabama at Birmingham, Birmingham, Alabama 35294-3300

Abstract

ABSTRACT The utility of the present generation of adenovirus (Ad) vectors for gene therapy applications could be improved by restricting native viral tropism to selected cell types. In order to achieve modification of Ad tropism, we proposed to exploit a minor component of viral capsid, protein IX (pIX), for genetic incorporation of targeting ligands. Based on the proposed structure of pIX, we hypothesized that its C terminus could be used as a site for incorporation of heterologous peptide sequences. We engineered recombinant Ad vectors containing modified pIX carrying a carboxy-terminal Flag epitope along with a heparan sulfate binding motif consisting of either eight consecutive lysines or a polylysine sequence. Using an anti-Flag antibody, we have shown that modified pIXs are incorporated into virions and display Flag-containing C-terminal sequences on the capsid surface. In addition, both lysine octapeptide and polylysine ligands were accessible for binding to heparin-coated beads. In contrast to virus bearing lysine octapeptide, Ad vector displaying a polylysine was capable of recognizing cellular heparan sulfate receptors. We have demonstrated that incorporation of a polylysine motif into the pIX ectodomain results in a significant augmentation of Ad fiber knob-independent infection of CAR-deficient cell types. Our data suggest that the pIX ectodomain can serve as an alternative to the fiber knob, penton base, and hexon proteins for incorporation of targeting ligands for the purpose of Ad tropism modification.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 139 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3