Polyamines Are Essential for the Formation of Plague Biofilm

Author:

Patel Chandra N.1,Wortham Brian W.1,Lines J. Louise2,Fetherston Jacqueline D.2,Perry Robert D.2,Oliveira Marcos A.13

Affiliation:

1. Department of Pharmaceutical Sciences, College of Pharmacy

2. Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40536

3. Markey Cancer Center and Center for Structural Biology

Abstract

ABSTRACT We provide the first evidence for a link between polyamines and biofilm levels in Yersinia pestis , the causative agent of plague. Polyamine-deficient mutants of Y. pestis were generated with a single deletion in speA or speC and a double deletion mutant. The genes speA and speC code for the biosynthetic enzymes arginine decarboxylase and ornithine decarboxylase, respectively. The level of the polyamine putrescine compared to the parental speA + speC + strain (KIM6+) was depleted progressively, with the highest levels found in the Y. pestis Δ speC mutant (55% reduction), followed by the Δ speA mutant (95% reduction) and the Δ speA Δ speC mutant (>99% reduction). Spermidine, on the other hand, remained constant in the single mutants but was undetected in the double mutant. The growth rates of mutants with single deletions were not altered, while the Δ speA Δ speC mutant grew at 65% of the exponential growth rate of the speA + speC + strain. Biofilm levels were assayed by three independent measures: Congo red binding, crystal violet staining, and confocal laser scanning microscopy. The level of biofilm correlated to the level of putrescine as measured by high-performance liquid chromatography-mass spectrometry and as observed in a chemical complementation curve. Complementation of the Δ speA Δ speC mutant with speA showed nearly full recovery of biofilm to levels observed in the speA + speC + strain. Chemical complementation of the double mutant and recovery of the biofilm defect were only observed with the polyamine putrescine.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3