Role of the polyamine transporter PotABCD during biofilm formation by Streptococcus pneumoniae

Author:

Vieira BrendaORCID,Alcantara Jessica B.,Destro Giulia,Guerra Maria E. S.,Oliveira SheilaORCID,Lima Carolina A.,Longato Giovanna B.,Hakansson Anders P.ORCID,Leite Luciana C.,Darrieux Michelle,R. Converso ThiagoORCID

Abstract

Streptococcus pneumoniae is a bacterium of great global importance, responsible for more than one million deaths per year. This bacterium is commonly acquired in the first years of life and colonizes the upper respiratory tract asymptomatically by forming biofilms that persist for extended times in the nasopharynx. However, under conditions that alter the bacterial environment, such as viral infections, pneumococci can escape from the biofilm and invade other niches, causing local and systemic disease of varying severity. The polyamine transporter PotABCD is required for optimal survival of the organism in the host. Immunization of mice with recombinant PotD can reduce subsequent bacterial colonization. PotD has also been suggested to be involved in pneumococcal biofilm development. Therefore, in this study we aimed to elucidate the role of PotABCD and polyamines in pneumococcal biofilm formation. First, the formation of biofilms was evaluated in the presence of exogenous polyamines–the substrate transported by PotABCD–added to culture medium. Next, a potABCD-negative strain was used to determine biofilm formation in different model systems using diverse levels of complexity from abiotic surface to cell substrate to in vivo animal models and was compared with its wild-type strain. The results showed that adding more polyamines to the medium stimulated biofilm formation, suggesting a direct correlation between polyamines and biofilm formation. Also, deletion of potABCD operon impaired biofilm formation in all models tested. Interestingly, more differences between wild-type and mutant strains were observed in the more complex model, which emphasizes the significance of employing more physiological models in studying biofilm formation.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Vetenskapsrådet

Publisher

Public Library of Science (PLoS)

Reference43 articles.

1. Commensal pathogens, with a focus on Streptococcus pneumoniae, and interactions with the human host;B Henriques-Normark;Exp Cell Res,2010

2. The long search for a serotype independent pneumococcal vaccine;TR Converso;Expert Rev Vaccines,2020

3. Streptococcus pneumoniae: sensibilidade a penicilina e moxifloxacina;F Rossi;J bras pneumol,2012

4. Measuring nasal bacterial load and its association with otitis media;H Smith-Vaughan;BMC Ear Nose Throat Disord,2006

5. Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease;Y Chao;Front Cell Infect Microbiol,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3